A V bundle - перевод на арабский
Diclib.com
Словарь ChatGPT
Введите слово или словосочетание на любом языке 👆
Язык:

Перевод и анализ слов искусственным интеллектом ChatGPT

На этой странице Вы можете получить подробный анализ слова или словосочетания, произведенный с помощью лучшей на сегодняшний день технологии искусственного интеллекта:

  • как употребляется слово
  • частота употребления
  • используется оно чаще в устной или письменной речи
  • варианты перевода слова
  • примеры употребления (несколько фраз с переводом)
  • этимология

A V bundle - перевод на арабский

RIGHT INVERSE OF A FIBER BUNDLE MAP
Section of a fiber bundle; Bundle section; Section (fibre bundle)
  • A vector bundle <math>E</math> over a base <math>M</math> with section <math>s</math>.

atrioventricular bundle         
COLLECTION OF HEART MUSCLE CELLS SPECIALIZED FOR ELECTRICAL CONDUCTION
Atrioventricular bundle of His; Bundle of his; HIS bundle; HIS Bundle; Artioventricular bundle; AV bundle; Atrioventricular bundle; His' bundle; His-bundle pacing; Crus of heart; His bundle
‎ الحُزْمَةُ الأُذَينِيَّةُ البُطَينِيَّة,حُزِمَةُ هِيس‎
bundle of His         
COLLECTION OF HEART MUSCLE CELLS SPECIALIZED FOR ELECTRICAL CONDUCTION
Atrioventricular bundle of His; Bundle of his; HIS bundle; HIS Bundle; Artioventricular bundle; AV bundle; Atrioventricular bundle; His' bundle; His-bundle pacing; Crus of heart; His bundle
‎ حُزْمَةُ هيِسْ,الحُزْمَةُ الأُذَينِيَّةُ البُطَينِيَّة‎
bundle of His         
COLLECTION OF HEART MUSCLE CELLS SPECIALIZED FOR ELECTRICAL CONDUCTION
Atrioventricular bundle of His; Bundle of his; HIS bundle; HIS Bundle; Artioventricular bundle; AV bundle; Atrioventricular bundle; His' bundle; His-bundle pacing; Crus of heart; His bundle
حُزْمَةُ هيِسْ

Определение

vascular bundle
¦ noun Botany a strand of conducting vessels in the stem or leaves of a plant, typically with phloem on the outside and xylem on the inside.

Википедия

Section (fiber bundle)

In the mathematical field of topology, a section (or cross section) of a fiber bundle E {\displaystyle E} is a continuous right inverse of the projection function π {\displaystyle \pi } . In other words, if E {\displaystyle E} is a fiber bundle over a base space, B {\displaystyle B} :

π : E B {\displaystyle \pi \colon E\to B}

then a section of that fiber bundle is a continuous map,

σ : B E {\displaystyle \sigma \colon B\to E}

such that

π ( σ ( x ) ) = x {\displaystyle \pi (\sigma (x))=x} for all x B {\displaystyle x\in B} .

A section is an abstract characterization of what it means to be a graph. The graph of a function g : B Y {\displaystyle g\colon B\to Y} can be identified with a function taking its values in the Cartesian product E = B × Y {\displaystyle E=B\times Y} , of B {\displaystyle B} and Y {\displaystyle Y} :

σ : B E , σ ( x ) = ( x , g ( x ) ) E . {\displaystyle \sigma \colon B\to E,\quad \sigma (x)=(x,g(x))\in E.}

Let π : E B {\displaystyle \pi \colon E\to B} be the projection onto the first factor: π ( x , y ) = x {\displaystyle \pi (x,y)=x} . Then a graph is any function σ {\displaystyle \sigma } for which π ( σ ( x ) ) = x {\displaystyle \pi (\sigma (x))=x} .

The language of fibre bundles allows this notion of a section to be generalized to the case when E {\displaystyle E} is not necessarily a Cartesian product. If π : E B {\displaystyle \pi \colon E\to B} is a fibre bundle, then a section is a choice of point σ ( x ) {\displaystyle \sigma (x)} in each of the fibres. The condition π ( σ ( x ) ) = x {\displaystyle \pi (\sigma (x))=x} simply means that the section at a point x {\displaystyle x} must lie over x {\displaystyle x} . (See image.)

For example, when E {\displaystyle E} is a vector bundle a section of E {\displaystyle E} is an element of the vector space E x {\displaystyle E_{x}} lying over each point x B {\displaystyle x\in B} . In particular, a vector field on a smooth manifold M {\displaystyle M} is a choice of tangent vector at each point of M {\displaystyle M} : this is a section of the tangent bundle of M {\displaystyle M} . Likewise, a 1-form on M {\displaystyle M} is a section of the cotangent bundle.

Sections, particularly of principal bundles and vector bundles, are also very important tools in differential geometry. In this setting, the base space B {\displaystyle B} is a smooth manifold M {\displaystyle M} , and E {\displaystyle E} is assumed to be a smooth fiber bundle over M {\displaystyle M} (i.e., E {\displaystyle E} is a smooth manifold and π : E M {\displaystyle \pi \colon E\to M} is a smooth map). In this case, one considers the space of smooth sections of E {\displaystyle E} over an open set U {\displaystyle U} , denoted C ( U , E ) {\displaystyle C^{\infty }(U,E)} . It is also useful in geometric analysis to consider spaces of sections with intermediate regularity (e.g., C k {\displaystyle C^{k}} sections, or sections with regularity in the sense of Hölder conditions or Sobolev spaces).